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This paper explains the dangers of concurrent access of data (in particular, linked lists). I 
provide an overview of interrupts, multitasking and callbacks. Lulling you into a false sense 
of security, I show you how simply incrementing an integer can go horribly wrong. After 
scaring you, this paper details a method to sidestep the dangers: atomicity. Then this paper 
goes through the trouble of offering (1) a pronunciation of atomicity (atom-ih-sit-ee), (2) a 
new method to create an atomic queue and (3) sneaky references to lyrics of cheesy 1980s 
songs.

Introduction

Life is so strange when you don’t know
How can you tell where you’re going to?

You can’t be sure of any situation
Something could change

And then you won’t know

Modern operating systems like to do many 
things at once. Multitasking, and its finer-
grained cousin, multithreading, allow many 
programs to progress seemingly in parallel.

Of course, on single processor machines, only 
one program can actually proceed at a time. A 
modern operating system gives individual tasks 
a small slice of the processor’s time. These “time 
slices” are so small that programs appear to be 
running in parallel from the user’s standpoint. 
On multiprocessor machines, two or more 
programs can actually progress at the same 
time.

While the ability to do more than one thing at a 
time is crucial for modern software, it has a dark 
side. Programs can interfere with each other in 
subtle ways, leading to corruption of data and to 
crashes.

Interrupts
or I’m about to lose control, and I 
think I like it

It helps to understand interrupts since it is how 
operating systems accomplish multitasking.

Inside your computer, your microprocessor (be 

it x86, 68K or PowerPC) sits on a bus along with 
a bunch of other black boxes. In reality, a bus is 
just a series of wires used for communication 
between the black boxes.

Along the bus sits various interesting devices. 
The memory controller, responsible for reading 
and writing to RAM. A time chip, watching the 
world grow old. A SCSI controller here, a USB 
controller there.

These black boxes send signals to the 
microprocessor when events occur. An event 
may be that a microsecond has passed or the 
user moved the mouse or the hard drive is 
finished reading data. More often then not, 
when the processor receives a signal, it stops 
what it was doing to handle the signal. The 
processor is interrupted.

The interrupt procedure is well-defined among 
microprocessors (see Figure 1):
1)  The processor pushes the context onto the 
stack. A context is the address of the next 
instruction (I call this address the resume 
address) and the contents of the processor’s 
registers.
2)  The processor will load the address of an 
Interrupt Handler corresponding to the 
interrupt’s type.
3)  The processor will then jump to the 
beginning of the Interrupt Handler.
4)  The Interrupt Handler is responsible for 
handling the interrupt as it sees fit. When the 
Interrupt Handler is finished, it executes a 
special Return From Interrupt instruction.
5)  When the processor encounters the Return 
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From Interrupt instruction, it restores the 
processor’s state by popping the saved context 
off the stack and jumping to the resume address.
6)  With any luck, the interrupted program is 
blissfully unaware it was ever interrupted.

Figure 1.

Interesting Factoid: The processor needs to 
know where to find these Interrupt Handlers. 
On the original 68000 processor, the machine 
would load these addresses from the block of 
memory beginning at address 0. This is why 
writing to a nil pointer or handle is such a bad 
thing: you can easily fill the Interrupt Handler 
Table with data. During an interrupt, the 
processor attempts to interpret your data as 
addresses of an Interrupt Handler, leading to 
destinations unknown.

Multitasking
or Wake me up, before you go go

Modern operating systems use interrupts to 
multitask. Before the Interrupt Handler executes 
the Return From Interrupt instruction, it swaps 
out the old context. In its place, the operating 
system swaps in a context of a suspended 
program. When the processor executes the 
Return From Interrupt instruction, it 
unknowingly suspends one program and 
resumes another.

This is known as preemptive multitasking and 
stands in stark contrast to the Mac OS’ 
cooperative multitasking. The Mac OS will not 
preemptively switch from one task to another. 
Instead, it requires each program to call 
WaitNextEvent() or its cronies. Only then 
will one program be suspended and another 
resumed.

On modern operating systems, the operating 
system has the final say about which task gets to 
proceed and which get suspended until later. 
This leads to unpredictable behavior from the 
programmer’s viewpoint. How your program 
proceeds depends on what other programs are 
running. You cannot be sure that your program 
will proceed to completion without another 
program mucking with your data.

While the Mac OS lacks preemptive 
multitasking, you get the same effect from 
callbacks.

Callbacks
or Who can it be now?

Callbacks are application-supplied pointers to 
application-defined routines (or nowadays, 
routine descriptors pointing to application-
defined routines). Typically, the application 
passes an address to a routine to the Mac OS, 
and later the Mac OS will “call back” into the 
application via the supplied routine.

Some callbacks are nice. Examples include the 
Dialog Manager and Apple Event Manager’s 
callbacks. Your application is called when its 
context is current and valid. You can allocate 
memory, dispose handles, open files, almost 
anything you would want.

Other callbacks, like the File Manager’s or Open 
Transport’s, are not so nice. You cannot depend 
on your application’s context being current. You 
cannot allocate memory using the standard 
Memory Manager, or even depend on unlocked 
handles. You have serious restrictions. Apple 
did not lay all these restrictions at your feet just 
to be mean — they did it because your callback 
is being called at interrupt time. Interrupt time 
is the time when the processor is handling an 
interrupt.

Let us take the File Manager as an example. 
Your application goes to read a block of data 
from a file from a SCSI hard disk. Being a 
Leading Edge Developer, you use the Mac OS’ 
PBReadAsync() routine and pass a File 
Manager callback (called a completion routine). 
When the SCSI controller is finished reading 
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from the disk, it signals the microprocessor. The 
microprocessor interrupts the current flow of 
software and jumps to the Interrupt Handler, 
supplied by the Mac OS. The Mac OS finds your 
supplied completion routine and dutifully 
jumps to it. See Figure 2.

Interrupt!

Load Interrupt
Handler
Address

Call Interrupt
Handler

Interrupt
Handler

Find Interrupt
Handler Table

Set Interrupt
Mask

Execute Return
From Interrupt

Instruction

Clear Interrupt
Mask

Push Context
Onto Stack

Update the
Operating System

Pop Context from
Stack and
Resume

Completed!

Call Callbacks

Completion
Routine

Figure 2.

Now your software is in an interesting state. It is 
likely your application has been interrupted, 
and now re-entered via the callback mechanism. 
It is possible your application just called 
NewHandle() and the Mac OS was in the 
middle of moving blocks of memory around 
when it was interrupted.

Now it becomes clearer why certain callbacks 
are limited in what they can do. Most of the Mac 
OS is not reentrant, meaning Bad Things 
happen if you interrupt the Mac OS and try to 
re-enter it during the interrupt (see 
[Apple1998a]).

Writing reentrant software is not easy, since 
something as simple as incrementing a shared 
counter can go horribly wrong.

Reentrancy
or Take on me

Pretend you give up your life as a corporate 
lacky and start your own business selling a 

high-performance Open Transport-based server. 
Your server allows multiple connections at once, 
which presents a problem when the user quits 
your server. All connections must be gracefully 
closed before the server exits, otherwise your 
server will crash.

The solution is simple: with each new 
connection, a global counter is incremented. As 
each connection closes, the global counter is 
decremented. Now when the user goes to quit, 
your server blocks new connections and simply 
waits to the global counter to decrement to zero 
before quitting. The code you wrote for 
incrementing the counter is shown in Listing 1.

Listing 1.
unsigned long gConnectCount;

void  IncrementConnectCount()
{
  ++gConnectCount;

}

Many months pass and you finally ship your 
first product. Soon complaints roll in that your 
server randomly crashes upon quitting. You go 
over your code with a fine-toothed comb and 
cannot find the bug. Your server gets a 
reputation for being buggy and soon purchases 
cease. Finally you go bankrupt and go to work 
(shudder) admistrating corporate Wintel 
systems. It turns out that 
IncrementConnectCount() has a bug in it.

Bug? It is one line of code! What possibly could 
go wrong with one line of code? Hint: it is not 
reentrant (okay, that is the full answer, not a 
hint).

Your precious C compiler translated your one-
liner into five separate PowerPC instructions, 
into something like Listing 2.

Listing 2.
//  Load address of gConnectCount into register r3.
lwz   r3, gConnectCount(rtoc)
//  Load integer from RAM into register r4.
lwz   r4, 0(r3)
//  Add 1 to register r4.
addi  r4, r4, 1
//  Store incremented value from register r4 back into RAM.
stw   r4, 0(r3)
//  Return from subroutine.

Atomicity, page 3



blr

The initial lwz and final blr can be safely 
ignored — it is just overhead to access the global 
variable and return from the subroutine, 
respectively.

In this function, the integer gConnectCount is 
loaded into register r4 (the second lwz), one is 
added to register r4 (addi), and the contents of 
register r4 are written back to gConnectCount 
(stw). Like it or not, the PowerPC is a RISC 
processor with a load/store architecture. There 
is not an instruction to simply add 1 to a value 
in memory.

The Window of Death
or Once in a lifetime

It turns out there is a small possibility that your 
IncrementConnectCount() will be 
interrupted. When that happens, there is a small 
possibility that your function will be reentered. 
When the happens, your program will do the 
wrong thing.

If your function is interrupted after it initially 
loads the value of gConnectCount and 
reentered before it stores the updated value 
back into gConnectCount, you will lose an 
increment. It helps if you visualize the flow of 
your function. Figure 3 depicts the function 
IncrementConnectCount() in action. For 
visualization purposes, the gConnectCount is 
assumed to hold 22.

Figure 3.

Figure 4 depicts IncrementConnectCount() 
being called twice in a row.

Figure 4.

All is peachy so far. However, it is possible for 
IncrementConnectCount() to be interrupted 
and reentered as illustrated in Figure 5.

Figure 5.

Here, IncrementConnectCount() is called 
twice but ends up only incrementing 
gConnectCount once. The problem is that 
IncrementConnectCount() does not finish 
storing to RAM before it is reentered. If the 
function is reentered after the load instruction, 
but before the store instruction, the function will 
fail. A slight variation, where the function is 
reentered after the increment instruction, will 
also fail. See Figure 6.

Figure 6.

IncrementConnectCount(), as it is currently 
written, has a small (two instruction) Window 
of Death.

Exploring the Window of Death
or She blinded me with science

Most tasks are comprised of a series of 
instructions. Some tasks require briefly putting 
the given data into an invalid state before 
completing. If a task’s instruction stream is 
interrupted before it completes, the data will be 
in an invalid state. If the invalid data is used 
during the interrupt, your program may operate 
incorrectly. This is the fundamental cause of the 
Window of Death.

Let us look at real-world example: a singly 
Atomicity, page 4



linked list. Every non-trivial program makes use 
of lists, and singly linked list are flexible and 
space efficient. The Mac OS uses singly linked 
lists all over the place. These Mac OS singly 
linked lists are optimized for adding elements to 
the end of the list and removing items from the 
front of the list. These optimized singly linked 
lists are called queues (see [Apple1994]).

Queues are handy method of asynchronous 
communication. Say two programs want to talk 
to each other. Program A can place a message in 
Program B’s queue. Eventually Program B will 
check its queue, take the message and act on it. 
The programs do not need to be synchronized 
— Program B can be doing anything while 
Program A sends the message — and the 
message still gets there.

Like most operating systems, the Mac OS has 
device drivers — small programs devoted to 
control and monitor hardware. Device drivers 
are low-level and tend to be interrupt-driven. 
Queues also help out communication here: 
programs are free to place requests into the 
device driver’s queue at any time. Multiple 
requests can be outstanding.

Listing 3.
typedef  struct  QElem  QElem, *QElemPtr;

struct  QElem  {
  QElemPtr  qLink;
  short     qType;
  short     qData[1];
};

typedef  struct  {
  short     qFlags;
  QElemPtr  qHead;
  QElemPtr  qTail;

} QHdr, *QHdrPtr;

Listing 3 details how the Mac OS defines a 
queue. A queue is made up of a QHdr, which 
has three fields: qFlags (ignored here), qHead 
(which always either points to the first element 
in the queue or is nil) and qTail (which 
always either points to the last element in the 
queue or is nil). An empty queue is 
represented when qHead and qTail are nil. A 
queue containing one element has qHead and 
qTail pointing to the same element. 

Note if a queue is not empty, then the last 
element’s qLink pointer is always set to nil. 
Otherwise, the queue is invalid (or corrupt). 
Also note that qHead and qTail can either both 
be nil, or neither can be nil. If one is nil and 
the other is not nil, then the QHdr is invalid. 
Figure 7 will make this more clear.

Figure 7.

Listing 4 shows a reasonable implementation of 
a function, EnqueueElement(), that places an 
element at the end of a queue.

Listing 4.
    void
EnqueueElement(
    QElem    *element,
    QHdr     *header )
{
    element->qLink = nil;
    if( header->qTail != nil )
        header->qTail->qLink = element;
    else
        header->qHead = element;
    header->qTail = element;

}

For visualization purposes, let us walk through 
EnqueueElement() (see Figure 8). To keep 
things simple, we will assume that the queue 
already has one element it named “A-Ha”. The 
element we are adding is named “Bananarama”.
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    void
EnqueueElement(
    QElem    *element,
    QHdr     *header )
{
    element->qLink = nil;
    if( header->qTail != nil )
        header->qTail->qLink = element;
    else
        header->qHead = element;

    header->qTail = element;
}

Figure 8.

You will notice that EnqueueElement() does 
two things when confronted with non-empty 
queue: (1) set the last element’s qLink pointer 
to the new element and (2) sets the header’s 
qTail to point to the new element.

You will also notice that between point 1 and 
point 2, the queue is in an invalid state. This is 
the Window of Death we have all come to know 
and love. If something interrupts 
EnqueueElement() between these two points 
and accesses the queue, they will find the queue 
in an invalid state. Let us move on to the other 
function. Listing 5 is a reasonable 
implementation of a function that removes the 
first element from the queue.

Listing 5.
    QElemPtr
DequeueFirstElement(
    QHdr    *header )
{
    QElemPtr    result = header->qHead;
    
    if( result ) {
        if( header->qTail == result )
            header->qTail = nil;
        header->qHead = result->qLink;
    }
    
    return( result );

}

Let us walk through this 

DequeueFirstElement() assuming a queue 
containing one element. See Figure 9.

        header->qHead = result->qLink;
    }
    
    return( result );
}

    QElemPtr
DequeueFirstElement(
    QHdr    *header )
{
    QElemPtr    result = header->qHead;
    
    if( result ) {
        if( header->qTail == result )
            header->qTail = nil;

Figure 9.

Like EnqueueElement(), 
DequeueFirstElement() performs two 
modifications on an one-element queue: (1) sets 
the header’s qTail pointer to nil and (2) sets 
the header’s qHead to point to the second 
element. Of course, there is no second element 
(A-Ha’s qLink pointer is nil), so qHead is set 
to nil. Also like EnqueueElement(), 
DequeueFirstElement() has a Window of 
Death.

We have been building to it, so let us cut the 
tension by walking through an innocent 
application’s call to 
DequeueFirstElement(). Unluckily for the 
application, DequeueFirstElement() is 
interrupted and EnqueueElement() is called, 
specifying the same queue. Witness the carnage 
in Figure 10.
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        header->qHead = result->qLink;
    }
    
    return( result );
}

    QElemPtr
DequeueFirstElement(
    QHdr    *header )
{
    QElemPtr    result = header->qHead;
    
    if( result ) {
        if( header->qTail == result )
            header->qTail = nil;

    void
EnqueueElement(
    QElem    *element,
    QHdr     *header )
{
    element->qLink = nil;
    if( header->qTail != nil )
        header->qTail->qLink = element;
    else
        header->qHead = element;

    header->qTail = element;
}

Figure 10.

Interesting tidbit number 1: After 
EnqueueElement() completed task 2, the 
queue is in a valid state. EnqueueElement() 
“fixes” the invalid queue. However, 
EnqueueElement() returns and 
DequeueFirstElement() is resumed, only to 
deal the death blow to the queue.

Interesting tidbit number 2: If we reverse this 
scenario (that is, DequeueFirstElement() 
interrupts EnqueueElement() during its 
Window of Death), the queue is corrupted. 
However, if the queue holds exactly one item, 
the functions interact in such a way that both 
functions succeed without corrupting the queue!

Interesting tidbit number 3: Even though we 
have seen how EnqueueElement() and 
DequeueFirstElement() will corrupt the 
queue, in fact there is nothing wrong with either 
of them. Both will function admirably so long as 
you do not interrupt them during their Window 
of Death. Indeed, there is no way to write this 
code in C (or C++) to make it “right”. You have 
to go lower-level than what C offers, which is 
low indeed.

There is only a small chance of encountering the 
Window of Death. However, the risk is 
accumulative. Each time you call a subroutine 

with a Window of Death, the possibilty 
increases towards 100%.

Closing the Window of Death
or The safety dance

The cause of the Window of Death is a series of 
instructions that should not be interrupted. So it 
stands to reason that by minimizing the number 
of intructions, the Window of Death would 
shrink. Indeed, simply turning on your 
compiler’s optimizer will shrink the Windows. I 
compiled EnqueueElement() using 
Metrowerks’s PowerPC compiler without any 
optimization. It produced 11 instructions, with a 
5 instruction-long Window of Death (the 
Window made up 45% of the function). After 
turning on the optimizers, the function shrunk 
to 10 instructions, with a 4 instruction-long 
Window of Death (reduced to 40% of the 
function).

Remember our IncrementConnectCount() 
function from before? The PowerPC is a 
load/store architecture. In order to increment a 
value in memory, it first needs to load the value 
into a register, then increment it and finally 
store it back into memory. That is three 
instructions, with a two instruction Window of 
Death.

The 68K is not a load/store architecture: the add 
instruction can directly modify memory. If you 
recompile IncrementConnectCount() for 
the 68K, the Window of Death disappears! That 
is because the 68K add instruction reads the 
value in memory, adds to it and writes it back 
out in one indivisible operation, otherwise 
known as an atomic instruction. The word 
atomic comes from the word atom, which 
means “indivisible”.

The Mac OS Queue Utilities
or I want to be your sledgehammer

Way back in the early 1980s, the Mac OS system 
software engineers had a problem. They were 
using queues for communications between 
normal event-driven applications and interrupt-
driven device drivers.

However, there was not a way to write an 
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atomic linked list. The needed instructions, cas 
and cas2, were not available until the Mac II, 
with its 68020, rode into town. Their solution 
was hard and heavy, but it worked: they 
disabled interrupts.

The 68K defines a register called the status 
register. Three bits of this register are set aside 
as the interrupt mask. Interrupts on the 68K 
come in 7 levels, one through seven. It is 
possible to set this interrupt mask so that any 
interrupts at or below the mask are ignored. For 
example, if you want to disable Time Manager 
tasks (which execute at interrupt level 1), set the 
interrupt mask to 1. Any interrupts at level 2 or 
above will be handled, any interrupts at level 1 
are disabled. Setting the interrupt mask to zero 
enables all interrupts. Application software 
spends most of its time at with the interrupt 
mask set to zero.

Disclaimer: It is undocumented that Time 
Manager tasks execute at interrupt level 1, and 
is subject to change. This example is for 
illustrative purposes only (see [Apple1998a]).

Disabling interrupts works, but it is not a very 
nice thing to do. It hurts performance and can 
lead to data loss and data corruption. 
Remember, interrupts are how all those black 
boxes communicate with the microprocessor. 
One of those devices might be a serial chip 
whose puny buffers are filling fast. From the 
black boxes’ point of view, the processor 
becomes non-responsive. Thus this technique is 
sometimes (though rarely) known as “when we 
pretend that we’re dead”.

The Mac OS system software engineers wrote 
two functions: Enqueue() and Dequeue(). 
Both set the interrupt mask to 7, its highest 
level. By disabling interrupts, the functions 
know they will complete without tragedy.

It was the right thing to do, however the jump to 
PowerPC made this operation expensive. In 
order to provide complete compatibility, the 
PowerPC version  of the Mac OS runs a 
nanokernal. This nanokernal is responsible for 
catching PowerPC interrupts and revectoring 
them through the 68K emulator. As a result, the 
68K emulator is tightly wound to the PowerPC. 
Indeed, the only way to disable interrupts on 

the Power Macintosh is to switch into 68K 
mode, set the interrupt mask to 7, and switch 
back to PowerPC.

As we will see later, it is impossible to write an 
atomic version of Enqueue() and Dequeue() 
on the PowerPC. So Enqueue() and 
Dequeue() are stuck being 68K code. When a 
PowerPC native application calls these 
functions, you will get two mixed-mode hits.

To top it all off, Dequeue() works in linear 
time — meaning the longer the queue, the 
longer it takes to remove an arbitrary element. If 
your PowerPC native application attempts to 
remove the last item of a thousand element 
queue, you suffer (1) a mixed mode switch 
entering Dequeue(), (2) interrupts are 
disabled, (3) wait while Dequeue() iterates 
over 999 elements to find the element, (4) re-
enable interrupts and (5) another mixed mode 
switch to reenter your application. Whew!

PowerPC Atomicity
or Always something there to 
remind me

The PowerPC is a Reduced Instruction Set 
Computer (RISC) architecture. Only two classes 
of instructions are allowed to touch memory: 
load and store. Other instructions are limited 
only to touching registers. Really, this is all for 
the best, but it sure makes atomicity difficult. 
The PowerPC engineers threw us a bone in the 
form of two special instructions: Load Word and 
Reserve Index (lwarx) and Store Word 
Conditional Index (stwcx.). 

lwarx works just like the common Load Word 
and Zero Indexed (lwzx), except it places a 
reservation on the loaded address as well as 
loading the data. The PowerPC processor can 
hold only one reservation at a time.

stwcx., is the yin to lwarx’s yang. Alone, 
neither is the life of the party. Together, they 
make beautiful music. You see, stwcx. works 
just like any other store instruction, except 
stwcx. is conditional. It only performs the 
store if a reservation is present on the given 
address. If there is a reservation, then it clears 
the reservation, performs the store and sets the 
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condition register CR0[EQ] to true. Otherwise, 
the instruction does nothing except set the 
CR0[EQ] to false.

So what are these “reservations”? The main 
reference for the software interface to the 
PowerPC processor, the PowerPC Microprocessor 
Family: The Programming Environments, is vague 
on the subject. It seems a reservation acts 
somewhat like a register. During each store 
instruction, the processor compares the given 
address to reservation. If they are equal, the 
reservation is cleared. However, reservations 
can also work in multiprocessor environment. If 
processor A places a reservation on address X 
and processor B stores to address X, processor 
A’s reservation is cleared. This suggests 
reservations are more than glorified registers. 
Chances are the reference manual is vague since 
reservations are implemented in different ways 
on different processors.

The Window of Death is caused by a series of 
instructions that should not be interrupted. The 
Queue Utilities fight interruptions by disabling 
interrupts. The 68020 and later fight 
interruptions by doing more work in each 
instruction. The PowerPC’s answer is different: 
go ahead, interrupt all you want — just leave a 
note that you have mucked with our data.

These two instructions form a foundation for 
emulating atomicity on the PowerPC. Let us go 
back to our poor non-atomic 
IncrementConnectCount() function, 
reviewed in Listing 6.

Listing 6.
//  Load address of gConnectCount into register r3.
lwz   r3, gConnectCount(rtoc)
//  Load integer from RAM into register r4.
lwz   r4, 0(r3)
//  Add 1 to register r4.
addi  r4, r4, 1
//  Store incremented value from register r4 back into RAM.
stw   r4, 0(r3)
//  Return from subroutine.

blr

Listing 7 details how 
IncrementConnectCount() can be re-
written to be atomic.

Listing 7.
    //  Load address of gConnectCount into register r3.
    lwz       r3, gConnectCount(rtoc)
again:
    //  Load gConnectCount into register r4.
    lwarx     r4, 0, r3
    //  Add 1 to register r4.
    addi      r4, r4, 1
    //  If we didn’t lose the reservation
    //  Then store register r4 into gConnectCount.
    stwcx.    r4, 0, r3
    //  Else try again.
    bne-      again
    //  Return from subroutine.

    blr

The basic idea here is that if the reservation is 
lost, the function tries again. It is unlikely it will 
fail the first time around, even more unlikely the 
second, close to impossible the third, etc. You 
computer science types may worry that there is 
no guarantee of forward progress. No one seems 
to care about this possibility, but you could add 
a retry counter to make sure the function runs in 
finite time.

Clever as reservations are, the limit of one per 
processor limits their use. You only can 
atomically modify one 32 bit word at a time. 
This rules out fast doubly linked lists, which 
require an atomic update of two values in 
memory. It also rules out all but the most basic 
singly linked list: a stack. More on this later.

68K Atomicity
or Sweet dreams are made of this

The 68K is fairly awesome when it comes to 
atomicity. It defines two instructions that really 
help out: Compare and Swap (cas) and 
Compare and Swap 2 (cas2).

The cas instruction takes three parameters: a 
comparison value, an update value and an 
address. cas will atomically compare the value 
at the given address to the comparison value. If 
the values are equal, cas will atomically update 
the value in memory with the update value and 
set the Z flag to true. Otherwise cas does 
nothing except set the Z flag to false.

A program can grab a value from memory, 
modify it, and then execute the cas instruction. 
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If the Z flag is set after the instruction, the 
program knows that the value in memory was 
changed after it was copied, and can retry the 
operation.

This try-test-retry business is a lot like the 
PowerPC. In fact, rewriting a 68K version of an 
atomic PowerPC function is easy since they act 
similar. But there is nothing like cas2 on the 
PowerPC.

cas2 works like cas, only with 2 comparison 
values, 2 update values and 2 addresses. This 
allows atomic modification of two different 
values in memory. This allows implementation 
of atomic doubly linked lists.

Sadly, this instruction is not used much. A 
compiler would never generate it (indeed, 
Metrowerks 68K C compiler’s inline assembler 
does not even recognize cas or cas2). 
Futhermore, there is no equivalent on the 
PowerPC. It is important to be able to produce 
68K and PowerPC binaries from a single source 
base, so functions need to be implementable on 
both sides of the fence. Atomic stacks can be 
implemented natively on 68K and PowerPC, so 
let us concentrate on those.

Atomic Stacks
or Everything counts in large 
amounts

In the mid 1990s, Apple was working on its new 
networking architecture, Open Transport. Open 
Transport would make extensive use of linked 
lists, and Apple was painfully aware about 
Enqueue() and Dequeue()’s inefficiencies. 
Apple needed new list code.

It was a good thing the PowerPC was out, 
otherwise Apple probably would have chosen 
cas2 as the basis for the linked list code, 
resulting in tragedy when the PowerPC came 
along. It was a good time for new list code: the 
old 68000 machines were dwindling in numbers, 
so Apple could take advantage of the 68020’s 
cas and the PowerPC’s lwarx/stwcx. deadly 
duo. The need for atomic stacks is a big reason 
why Open Transport will not run on a 68000 
processor.

Open Transport defines three functions to deal 
with atomic stacks. By the way, Open Transport 
does not call them atomic stacks, instead it is the 
more formal “last in, first out” (LIFO) list. The 
three functions are (1) OTLIFOEnqueue() 
which pushes an element onto a stack, (2) 
OTLIFODequeue() which pops an element off 
a stack and (3) OTLIFOStealList() which 
atomically steals a list. Stealing an atomic stack 
means copying the stack’s head and setting the 
original to nil. You now own the stack.

Stacks are not as useful as queues, which Open 
Transport calls “first in, first out” (FIFO) lists. So 
Open Transport provides a function called 
OTReverseList(). This non-atomic function 
reverses a stack into a more useful queue. The 
idea is to populate an atomic stack, atomically 
steal it and non-atomically reverse it into a 
queue. It is a work-around, but it is better than 
disabling interrupts.

As nice as Open Transport is, it is not available 
on all machines. I want my software to work on 
as many machines as possible, so I wrote my 
own atomic stack functions: 
PushAtomicStack(), PopAtomicStack() 
and StealAtomicStack(). Listing 8 and 
Listing 9 display the implementation of 
PushAtomicStack() and 
PopAtomicStack(), respectively. For brevity, 
I am only listing the Classic 68K 
implementation. In reality, I use an unholy 
combination of the C #if/#else/#endif 
preprocessor commands and Metrowerks C 
compilers’ ability to define assembly functions 
to automatically generate the correct code for 
Classic 68K, CFM-68K and PowerPC from the 
same source file. You can grab the full source for 
these functions (including the PowerPC 
implementation) from the MacHack 1999 CD or 
you can email me.

Listing 8.
typedef  struct  AtomicElement    
AtomicElement, AtomicStack;

struct    AtomicElement    {
    AtomicElement  *next;
};

    asm
    pascal
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    void
PushAtomicStack(
    AtomicElement    *element,
    AtomicStack      *stack )
{
    // stack.
    movea.l  4(a7), a0
    // element.
    movea.l  8(a7), a1
    // element.
    move.l   a1, d0
again:
    // next = stack->next.
    move.l   (a0), d1
    // element->next = next.
    move.l   d1, (a1)
    // If stack->next didn’t change,
    // Then set stack->next to element.
//  cas.l    d1, d0, (a0)
    // CWPro2 doesn’t know cas. Here’s the raw opcode.
    dc.l     0x0ED00001
    // Else someone else progressed, try again.
    bne.s    again
    // Pop the return address.
    movea.l  (a7)+, a0
    // Pop the parameters.
    addq.l   #8, a7
    // We’re outta here.
    jmp      (a0)

}

Listing 9.
    asm
    pascal
    AtomicElement*
PopAtomicStack(
    AtomicStack    *stack )
{
    // stack.
    movea.l  4(a7), a0
again:
    // element = stack->next.
    movea.l  (a0), a1
    // element = stack->next.
    move.l   a1, d0
    // Is element == nil?
    tst.l    d0
    // If equal, return nil.
    beq.s    done
    // next = element->next.
    move.l   (a1), d1
    // CWPro2 doesn’t know cas. Here’s the raw opcode.
    dc.l     0xED00040
    // If stack->next wasn’t changed, stack->next = next.
//  cas.l    d0, d1, (a0)
    // Else someone else progressed, try again.
    bne.s    again

done:
    // Pop the return address.
    movea.l  (a7)+, a0
    // Pop stack parameter.
    addq.l   #4, a7
    // Return the popped element on the stack.
    move.l   d0, (a7)
    // We’re outta here.
    jmp      (a0)

}

Atomic Locks
or I’m on the hunt, I’m after you

Atomic stacks are fast and reentrant. However, 
it is easy to corrupt the stack into a nasty 
circular list. This occurs if an element is pushed 
onto the stack more than once. As an example, 
picture a stack containing two elements: 
“Bananarama” and “Cheap Trick”. You 
successfully push the new element “A-Ha”. 
Then you push Bananarama again. The list 
becomes currupted with Bananarama pointing 
to A-Ha and A-Ha pointing to Bananarama. 
Cheap Trick is removed from the stack. Witness 
the entire sorted affair in Figure 11.

Figure 11.

Often you will be faced with a situation where 
you should place an element onto a stack if it is 
not already in the stack. You could walk the 
stack looking for the given element, however 
such an operation would be non-atomic and 
thus could fail if interrupted.

The better approach is to keep a flag in the 
element. When the element in pushed onto the 
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stack, the flag is set to true. When the element is 
popped, the flag is cleared. Now it is easy to 
know whether an element is already in a list.

However, the element’s flag is a shared value, 
which means it is subject to reentrancy issues. 
The answer is to set the flag atomically. An 
atomically controlled flag is called an atomic 
lock. We can define two functions that 
manipulate atomic locks: GrabAtomicLock() 
and ReleaseAtomicLock(). Listing 10 shows 
the prototypes for these functions.

Listing 10.
typedef unsigned long   AtomicLock;

    long  //  Non-zero if successfully grabbed.
GrabAtomicLock(
    AtomicLock    *lock );

    void
ReleaseAtomicLock(

    AtomicLock    *lock );

GrabAtomicLock() atomically compares the 
value in lock against zero. If the lock’s value is 
zero, it is atomically set to one and 
GrabAtomicLock() returns true. Otherwise 
the value is left alone and GrabAtomicLock() 
returns false. ReleaseAtomicLock() simply 
unconditionally sets the lock’s value to zero.

Atomic locks are very useful for 
synchronization, and are found on most 
operating systems. They can go by different 
names, like mutex (short for “mutual 
exclusion”) or semaphore. Mutexes and 
semaphores can also be implemented by 
disabling interrupts.

Atomic Queues
or You spin me round

As we have seen above, you cannot atomically 
emulate traditional Mac OS queues on the 
PowerPC. However, with a slight redefinition of 
how the Mac OS defines a queue, you can get 
the same effect as a first in, first out queue.

The Mac OS allows Dequeue() to remove an 
arbitrary element. While this is nice, it is the 
reason we cannot make it atomic. Instead, I 
define two functions: PushAtomicQueue() 

and PopAtomicQueue(). They both work on a 
structure called an AtomicQueue, which is 
nothing more than two atomic stacks (see 
Listing 11).

Listing 11.
typedef    struct    {
    AtomicStack    in;
    AtomicStack    out;

}   AtomicQueue;

All PushAtomicQueue() does is call 
PushAtomicStack() to push the given 
element onto the in stack.

PopAtomicQueue()’s job is more complicated. 
First it tries PopAtomicStack() on out. If the 
result is not nil, PopAtomicQueue() returns it. 
Otherwise the stack is empty and needs 
“refilling”.

Refilling is accomplished by using 
StealAtomicStack() on in. Now we reverse 
the stack by popping each element from the 
stolen stack and pushing it onto out. Finally we 
pop out and return the result (which may be nil 
if the queue is empty). Perhaps Listing 12 will 
make this more clear.

Listing 12.
   AtomicElement*
PopAtomicQueue(
   AtomicQueue  *queue )
{
   AtomicElement  *next, *current;
   
   current = PopAtomicStack( &queue->out );
   
   if( current == nil ) {
       // Nothing to pop.
       // Refill the queue from the input stack.
       current = StealAtomicStack(&queue->in);
       while( current ) {
          next = current->next;
          PushAtomicStack(current,&queue->out);
          current = next;
       }
       current = PopAtomicStack( &queue->out );
   }
   
   return( current );

}

The only problem is that if 
PopAtomicQueue() is interrupted while 
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reversing the stack and one or more elements 
are added to the queue using 
PushAtomicQueue() and then 
PopAtomicQueue() is called again, the queue 
will not be first in, first out state — some 
elements will become out-of-order. No elements 
are lost, and the queue will not be corrupted, so 
this is not a big problem.

This is essentially the same thing as Open 
Transport’s atomic-LIFO reversal to normal-
FIFO technique, except the mechanics are 
hidden under two easily understood functions, 
providing a polished metaphor.

Conclusion
or Shout, shout, let it all out

Atomicity is important for maintaining 
correctness in the face of concurrency. 
Concurrency will become more of an issue as 
we move towards Mac OS X, so you should 
become prepared now. This paper helped 
illustrate the issues involved and offered a new 
method for implementing atomic queues. If you 
don’t know atomicity by now, you will never 
ever know it.
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[Songs1980s] Listed in order of inclusion. 
Format is:
“Quote”

Artist(s)
Song Title
Album

“Life is so strange...” (from the introduction)
Missing Persons
Destination Unknown
Spring Session M

“I’m about to lose control, and I think I like it”
Pointer Sisters
I’m So Excited
Break Out

“Wake me up, before you go go”
Wham!
Wake Me Up Before You Go Go
Make It Big

“Who can it be now?”
Men At Work
Who Can It Be Now?
Business As Usual

“Take on me”
A-Ha
Take on Me
Hunting High And Low

“Once in a lifetime”
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Talking Heads
Once in a Lifetime
Remain In Light

“She blinded me with science”
Thomas Dolby
She Blinded Me with Science
Retrospectacle-Best Of

“The safety dance”
Men Without Hats
The Safety Dance
The Safety Dance

“I want to be your sledgehammer”
Peter Gabriel
Sledgehammer
So

“When we pretend that we’re dead”
L7
Pretend We’re Dead
Bricks Are Heavy

“Always something there to remind me”
Naked Eyes
Always Something There to Remind Me
Promises, Promises

“Sweet dreams are made of this”
Eurythmics
Sweet Dreams (Are Made of This)
Sweet Dreams (Are made of this)

“Everything counts in large amounts”
Depeche Mode
Everything Counts
People are People

“I’m on the hunt, I’m after you”
Duran Duran
Hungry like the Wolf
Rio

“You spin me round”
Dead or Alive
You Spin Me Round (Like a Record)
Youthquake

“Shout, shout, let it all out”
Tears For Fears
Shout
Songs From The Big Chair 

“If you don’t know atomicity by now, you will 
never ever know it” (paraphrased)

Simply Red
If You Don’t Know Me by Now
A New Flame

“The Policy of Truth”
Depeche Mode
The Policy of Truth
Violator
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