
Atomicity
Concurrent Data Access Without Blowing Up

Copyright © 1999 Red Shed Software. All rights reserved
Written by Jonathan ‘Wolf’ Rentzsch (jon at redshed dot net)

This paper explains the dangers of concurrent access of data (in particular, linked lists). I
provide an overview of interrupts, multitasking and callbacks. Lulling you into a false sense
of security, I show you how simply incrementing an integer can go horribly wrong. After
scaring you, this paper details a method to sidestep the dangers: atomicity. Then this paper
goes through the trouble of offering (1) a pronunciation of atomicity (atom-ih-sit-ee), (2) a
new method to create an atomic queue and (3) sneaky references to lyrics of cheesy 1980s
songs.

Introduction

Life is so strange when you don’t know
How can you tell where you’re going to?

You can’t be sure of any situation
Something could change

And then you won’t know

Modern operating systems like to do many
things at once. Multitasking, and its finer-
grained cousin, multithreading, allow many
programs to progress seemingly in parallel.

Of course, on single processor machines, only
one program can actually proceed at a time. A
modern operating system gives individual tasks
a small slice of the processor’s time. These “time
slices” are so small that programs appear to be
running in parallel from the user’s standpoint.
On multiprocessor machines, two or more
programs can actually progress at the same
time.

While the ability to do more than one thing at a
time is crucial for modern software, it has a dark
side. Programs can interfere with each other in
subtle ways, leading to corruption of data and to
crashes.

Interrupts
or I’m about to lose control, and I
think I like it

It helps to understand interrupts since it is how
operating systems accomplish multitasking.

Inside your computer, your microprocessor (be

it x86, 68K or PowerPC) sits on a bus along with
a bunch of other black boxes. In reality, a bus is
just a series of wires used for communication
between the black boxes.

Along the bus sits various interesting devices.
The memory controller, responsible for reading
and writing to RAM. A time chip, watching the
world grow old. A SCSI controller here, a USB
controller there.

These black boxes send signals to the
microprocessor when events occur. An event
may be that a microsecond has passed or the
user moved the mouse or the hard drive is
finished reading data. More often then not,
when the processor receives a signal, it stops
what it was doing to handle the signal. The
processor is interrupted.

The interrupt procedure is well-defined among
microprocessors (see Figure 1):
1) The processor pushes the context onto the
stack. A context is the address of the next
instruction (I call this address the resume
address) and the contents of the processor’s
registers.
2) The processor will load the address of an
Interrupt Handler corresponding to the
interrupt’s type.
3) The processor will then jump to the
beginning of the Interrupt Handler.
4) The Interrupt Handler is responsible for
handling the interrupt as it sees fit. When the
Interrupt Handler is finished, it executes a
special Return From Interrupt instruction.
5) When the processor encounters the Return

Atomicity, page 1

From Interrupt instruction, it restores the
processor’s state by popping the saved context
off the stack and jumping to the resume address.
6) With any luck, the interrupted program is
blissfully unaware it was ever interrupted.

Figure 1.

Interesting Factoid: The processor needs to
know where to find these Interrupt Handlers.
On the original 68000 processor, the machine
would load these addresses from the block of
memory beginning at address 0. This is why
writing to a nil pointer or handle is such a bad
thing: you can easily fill the Interrupt Handler
Table with data. During an interrupt, the
processor attempts to interpret your data as
addresses of an Interrupt Handler, leading to
destinations unknown.

Multitasking
or Wake me up, before you go go

Modern operating systems use interrupts to
multitask. Before the Interrupt Handler executes
the Return From Interrupt instruction, it swaps
out the old context. In its place, the operating
system swaps in a context of a suspended
program. When the processor executes the
Return From Interrupt instruction, it
unknowingly suspends one program and
resumes another.

This is known as preemptive multitasking and
stands in stark contrast to the Mac OS’
cooperative multitasking. The Mac OS will not
preemptively switch from one task to another.
Instead, it requires each program to call
WaitNextEvent() or its cronies. Only then
will one program be suspended and another
resumed.

On modern operating systems, the operating
system has the final say about which task gets to
proceed and which get suspended until later.
This leads to unpredictable behavior from the
programmer’s viewpoint. How your program
proceeds depends on what other programs are
running. You cannot be sure that your program
will proceed to completion without another
program mucking with your data.

While the Mac OS lacks preemptive
multitasking, you get the same effect from
callbacks.

Callbacks
or Who can it be now?

Callbacks are application-supplied pointers to
application-defined routines (or nowadays,
routine descriptors pointing to application-
defined routines). Typically, the application
passes an address to a routine to the Mac OS,
and later the Mac OS will “call back” into the
application via the supplied routine.

Some callbacks are nice. Examples include the
Dialog Manager and Apple Event Manager’s
callbacks. Your application is called when its
context is current and valid. You can allocate
memory, dispose handles, open files, almost
anything you would want.

Other callbacks, like the File Manager’s or Open
Transport’s, are not so nice. You cannot depend
on your application’s context being current. You
cannot allocate memory using the standard
Memory Manager, or even depend on unlocked
handles. You have serious restrictions. Apple
did not lay all these restrictions at your feet just
to be mean — they did it because your callback
is being called at interrupt time. Interrupt time
is the time when the processor is handling an
interrupt.

Let us take the File Manager as an example.
Your application goes to read a block of data
from a file from a SCSI hard disk. Being a
Leading Edge Developer, you use the Mac OS’
PBReadAsync() routine and pass a File
Manager callback (called a completion routine).
When the SCSI controller is finished reading

Atomicity, page 2

from the disk, it signals the microprocessor. The
microprocessor interrupts the current flow of
software and jumps to the Interrupt Handler,
supplied by the Mac OS. The Mac OS finds your
supplied completion routine and dutifully
jumps to it. See Figure 2.

Interrupt!

Load Interrupt
Handler
Address

Call Interrupt
Handler

Interrupt
Handler

Find Interrupt
Handler Table

Set Interrupt
Mask

Execute Return
From Interrupt

Instruction

Clear Interrupt
Mask

Push Context
Onto Stack

Update the
Operating System

Pop Context from
Stack and
Resume

Completed!

Call Callbacks

Completion
Routine

Figure 2.

Now your software is in an interesting state. It is
likely your application has been interrupted,
and now re-entered via the callback mechanism.
It is possible your application just called
NewHandle() and the Mac OS was in the
middle of moving blocks of memory around
when it was interrupted.

Now it becomes clearer why certain callbacks
are limited in what they can do. Most of the Mac
OS is not reentrant, meaning Bad Things
happen if you interrupt the Mac OS and try to
re-enter it during the interrupt (see
[Apple1998a]).

Writing reentrant software is not easy, since
something as simple as incrementing a shared
counter can go horribly wrong.

Reentrancy
or Take on me

Pretend you give up your life as a corporate
lacky and start your own business selling a

high-performance Open Transport-based server.
Your server allows multiple connections at once,
which presents a problem when the user quits
your server. All connections must be gracefully
closed before the server exits, otherwise your
server will crash.

The solution is simple: with each new
connection, a global counter is incremented. As
each connection closes, the global counter is
decremented. Now when the user goes to quit,
your server blocks new connections and simply
waits to the global counter to decrement to zero
before quitting. The code you wrote for
incrementing the counter is shown in Listing 1.

Listing 1.
unsigned long gConnectCount;

void IncrementConnectCount()
{
 ++gConnectCount;

}

Many months pass and you finally ship your
first product. Soon complaints roll in that your
server randomly crashes upon quitting. You go
over your code with a fine-toothed comb and
cannot find the bug. Your server gets a
reputation for being buggy and soon purchases
cease. Finally you go bankrupt and go to work
(shudder) admistrating corporate Wintel
systems. It turns out that
IncrementConnectCount() has a bug in it.

Bug? It is one line of code! What possibly could
go wrong with one line of code? Hint: it is not
reentrant (okay, that is the full answer, not a
hint).

Your precious C compiler translated your one-
liner into five separate PowerPC instructions,
into something like Listing 2.

Listing 2.
// Load address of gConnectCount into register r3.
lwz r3, gConnectCount(rtoc)
// Load integer from RAM into register r4.
lwz r4, 0(r3)
// Add 1 to register r4.
addi r4, r4, 1
// Store incremented value from register r4 back into RAM.
stw r4, 0(r3)
// Return from subroutine.

Atomicity, page 3

blr

The initial lwz and final blr can be safely
ignored — it is just overhead to access the global
variable and return from the subroutine,
respectively.

In this function, the integer gConnectCount is
loaded into register r4 (the second lwz), one is
added to register r4 (addi), and the contents of
register r4 are written back to gConnectCount
(stw). Like it or not, the PowerPC is a RISC
processor with a load/store architecture. There
is not an instruction to simply add 1 to a value
in memory.

The Window of Death
or Once in a lifetime

It turns out there is a small possibility that your
IncrementConnectCount() will be
interrupted. When that happens, there is a small
possibility that your function will be reentered.
When the happens, your program will do the
wrong thing.

If your function is interrupted after it initially
loads the value of gConnectCount and
reentered before it stores the updated value
back into gConnectCount, you will lose an
increment. It helps if you visualize the flow of
your function. Figure 3 depicts the function
IncrementConnectCount() in action. For
visualization purposes, the gConnectCount is
assumed to hold 22.

Figure 3.

Figure 4 depicts IncrementConnectCount()
being called twice in a row.

Figure 4.

All is peachy so far. However, it is possible for
IncrementConnectCount() to be interrupted
and reentered as illustrated in Figure 5.

Figure 5.

Here, IncrementConnectCount() is called
twice but ends up only incrementing
gConnectCount once. The problem is that
IncrementConnectCount() does not finish
storing to RAM before it is reentered. If the
function is reentered after the load instruction,
but before the store instruction, the function will
fail. A slight variation, where the function is
reentered after the increment instruction, will
also fail. See Figure 6.

Figure 6.

IncrementConnectCount(), as it is currently
written, has a small (two instruction) Window
of Death.

Exploring the Window of Death
or She blinded me with science

Most tasks are comprised of a series of
instructions. Some tasks require briefly putting
the given data into an invalid state before
completing. If a task’s instruction stream is
interrupted before it completes, the data will be
in an invalid state. If the invalid data is used
during the interrupt, your program may operate
incorrectly. This is the fundamental cause of the
Window of Death.

Let us look at real-world example: a singly
Atomicity, page 4

linked list. Every non-trivial program makes use
of lists, and singly linked list are flexible and
space efficient. The Mac OS uses singly linked
lists all over the place. These Mac OS singly
linked lists are optimized for adding elements to
the end of the list and removing items from the
front of the list. These optimized singly linked
lists are called queues (see [Apple1994]).

Queues are handy method of asynchronous
communication. Say two programs want to talk
to each other. Program A can place a message in
Program B’s queue. Eventually Program B will
check its queue, take the message and act on it.
The programs do not need to be synchronized
— Program B can be doing anything while
Program A sends the message — and the
message still gets there.

Like most operating systems, the Mac OS has
device drivers — small programs devoted to
control and monitor hardware. Device drivers
are low-level and tend to be interrupt-driven.
Queues also help out communication here:
programs are free to place requests into the
device driver’s queue at any time. Multiple
requests can be outstanding.

Listing 3.
typedef struct QElem QElem, *QElemPtr;

struct QElem {
 QElemPtr qLink;
 short qType;
 short qData[1];
};

typedef struct {
 short qFlags;
 QElemPtr qHead;
 QElemPtr qTail;

} QHdr, *QHdrPtr;

Listing 3 details how the Mac OS defines a
queue. A queue is made up of a QHdr, which
has three fields: qFlags (ignored here), qHead
(which always either points to the first element
in the queue or is nil) and qTail (which
always either points to the last element in the
queue or is nil). An empty queue is
represented when qHead and qTail are nil. A
queue containing one element has qHead and
qTail pointing to the same element.

Note if a queue is not empty, then the last
element’s qLink pointer is always set to nil.
Otherwise, the queue is invalid (or corrupt).
Also note that qHead and qTail can either both
be nil, or neither can be nil. If one is nil and
the other is not nil, then the QHdr is invalid.
Figure 7 will make this more clear.

Figure 7.

Listing 4 shows a reasonable implementation of
a function, EnqueueElement(), that places an
element at the end of a queue.

Listing 4.
 void
EnqueueElement(
 QElem *element,
 QHdr *header)
{
 element->qLink = nil;
 if(header->qTail != nil)
 header->qTail->qLink = element;
 else
 header->qHead = element;
 header->qTail = element;

}

For visualization purposes, let us walk through
EnqueueElement() (see Figure 8). To keep
things simple, we will assume that the queue
already has one element it named “A-Ha”. The
element we are adding is named “Bananarama”.

Atomicity, page 5

 void
EnqueueElement(
 QElem *element,
 QHdr *header)
{
 element->qLink = nil;
 if(header->qTail != nil)
 header->qTail->qLink = element;
 else
 header->qHead = element;

 header->qTail = element;
}

Figure 8.

You will notice that EnqueueElement() does
two things when confronted with non-empty
queue: (1) set the last element’s qLink pointer
to the new element and (2) sets the header’s
qTail to point to the new element.

You will also notice that between point 1 and
point 2, the queue is in an invalid state. This is
the Window of Death we have all come to know
and love. If something interrupts
EnqueueElement() between these two points
and accesses the queue, they will find the queue
in an invalid state. Let us move on to the other
function. Listing 5 is a reasonable
implementation of a function that removes the
first element from the queue.

Listing 5.
 QElemPtr
DequeueFirstElement(
 QHdr *header)
{
 QElemPtr result = header->qHead;

 if(result) {
 if(header->qTail == result)
 header->qTail = nil;
 header->qHead = result->qLink;
 }

 return(result);

}

Let us walk through this

DequeueFirstElement() assuming a queue
containing one element. See Figure 9.

 header->qHead = result->qLink;
 }

 return(result);
}

 QElemPtr
DequeueFirstElement(
 QHdr *header)
{
 QElemPtr result = header->qHead;

 if(result) {
 if(header->qTail == result)
 header->qTail = nil;

Figure 9.

Like EnqueueElement(),
DequeueFirstElement() performs two
modifications on an one-element queue: (1) sets
the header’s qTail pointer to nil and (2) sets
the header’s qHead to point to the second
element. Of course, there is no second element
(A-Ha’s qLink pointer is nil), so qHead is set
to nil. Also like EnqueueElement(),
DequeueFirstElement() has a Window of
Death.

We have been building to it, so let us cut the
tension by walking through an innocent
application’s call to
DequeueFirstElement(). Unluckily for the
application, DequeueFirstElement() is
interrupted and EnqueueElement() is called,
specifying the same queue. Witness the carnage
in Figure 10.

Atomicity, page 6

 header->qHead = result->qLink;
 }

 return(result);
}

 QElemPtr
DequeueFirstElement(
 QHdr *header)
{
 QElemPtr result = header->qHead;

 if(result) {
 if(header->qTail == result)
 header->qTail = nil;

 void
EnqueueElement(
 QElem *element,
 QHdr *header)
{
 element->qLink = nil;
 if(header->qTail != nil)
 header->qTail->qLink = element;
 else
 header->qHead = element;

 header->qTail = element;
}

Figure 10.

Interesting tidbit number 1: After
EnqueueElement() completed task 2, the
queue is in a valid state. EnqueueElement()
“fixes” the invalid queue. However,
EnqueueElement() returns and
DequeueFirstElement() is resumed, only to
deal the death blow to the queue.

Interesting tidbit number 2: If we reverse this
scenario (that is, DequeueFirstElement()
interrupts EnqueueElement() during its
Window of Death), the queue is corrupted.
However, if the queue holds exactly one item,
the functions interact in such a way that both
functions succeed without corrupting the queue!

Interesting tidbit number 3: Even though we
have seen how EnqueueElement() and
DequeueFirstElement() will corrupt the
queue, in fact there is nothing wrong with either
of them. Both will function admirably so long as
you do not interrupt them during their Window
of Death. Indeed, there is no way to write this
code in C (or C++) to make it “right”. You have
to go lower-level than what C offers, which is
low indeed.

There is only a small chance of encountering the
Window of Death. However, the risk is
accumulative. Each time you call a subroutine

with a Window of Death, the possibilty
increases towards 100%.

Closing the Window of Death
or The safety dance

The cause of the Window of Death is a series of
instructions that should not be interrupted. So it
stands to reason that by minimizing the number
of intructions, the Window of Death would
shrink. Indeed, simply turning on your
compiler’s optimizer will shrink the Windows. I
compiled EnqueueElement() using
Metrowerks’s PowerPC compiler without any
optimization. It produced 11 instructions, with a
5 instruction-long Window of Death (the
Window made up 45% of the function). After
turning on the optimizers, the function shrunk
to 10 instructions, with a 4 instruction-long
Window of Death (reduced to 40% of the
function).

Remember our IncrementConnectCount()
function from before? The PowerPC is a
load/store architecture. In order to increment a
value in memory, it first needs to load the value
into a register, then increment it and finally
store it back into memory. That is three
instructions, with a two instruction Window of
Death.

The 68K is not a load/store architecture: the add
instruction can directly modify memory. If you
recompile IncrementConnectCount() for
the 68K, the Window of Death disappears! That
is because the 68K add instruction reads the
value in memory, adds to it and writes it back
out in one indivisible operation, otherwise
known as an atomic instruction. The word
atomic comes from the word atom, which
means “indivisible”.

The Mac OS Queue Utilities
or I want to be your sledgehammer

Way back in the early 1980s, the Mac OS system
software engineers had a problem. They were
using queues for communications between
normal event-driven applications and interrupt-
driven device drivers.

However, there was not a way to write an

Atomicity, page 7

atomic linked list. The needed instructions, cas
and cas2, were not available until the Mac II,
with its 68020, rode into town. Their solution
was hard and heavy, but it worked: they
disabled interrupts.

The 68K defines a register called the status
register. Three bits of this register are set aside
as the interrupt mask. Interrupts on the 68K
come in 7 levels, one through seven. It is
possible to set this interrupt mask so that any
interrupts at or below the mask are ignored. For
example, if you want to disable Time Manager
tasks (which execute at interrupt level 1), set the
interrupt mask to 1. Any interrupts at level 2 or
above will be handled, any interrupts at level 1
are disabled. Setting the interrupt mask to zero
enables all interrupts. Application software
spends most of its time at with the interrupt
mask set to zero.

Disclaimer: It is undocumented that Time
Manager tasks execute at interrupt level 1, and
is subject to change. This example is for
illustrative purposes only (see [Apple1998a]).

Disabling interrupts works, but it is not a very
nice thing to do. It hurts performance and can
lead to data loss and data corruption.
Remember, interrupts are how all those black
boxes communicate with the microprocessor.
One of those devices might be a serial chip
whose puny buffers are filling fast. From the
black boxes’ point of view, the processor
becomes non-responsive. Thus this technique is
sometimes (though rarely) known as “when we
pretend that we’re dead”.

The Mac OS system software engineers wrote
two functions: Enqueue() and Dequeue().
Both set the interrupt mask to 7, its highest
level. By disabling interrupts, the functions
know they will complete without tragedy.

It was the right thing to do, however the jump to
PowerPC made this operation expensive. In
order to provide complete compatibility, the
PowerPC version of the Mac OS runs a
nanokernal. This nanokernal is responsible for
catching PowerPC interrupts and revectoring
them through the 68K emulator. As a result, the
68K emulator is tightly wound to the PowerPC.
Indeed, the only way to disable interrupts on

the Power Macintosh is to switch into 68K
mode, set the interrupt mask to 7, and switch
back to PowerPC.

As we will see later, it is impossible to write an
atomic version of Enqueue() and Dequeue()
on the PowerPC. So Enqueue() and
Dequeue() are stuck being 68K code. When a
PowerPC native application calls these
functions, you will get two mixed-mode hits.

To top it all off, Dequeue() works in linear
time — meaning the longer the queue, the
longer it takes to remove an arbitrary element. If
your PowerPC native application attempts to
remove the last item of a thousand element
queue, you suffer (1) a mixed mode switch
entering Dequeue(), (2) interrupts are
disabled, (3) wait while Dequeue() iterates
over 999 elements to find the element, (4) re-
enable interrupts and (5) another mixed mode
switch to reenter your application. Whew!

PowerPC Atomicity
or Always something there to
remind me

The PowerPC is a Reduced Instruction Set
Computer (RISC) architecture. Only two classes
of instructions are allowed to touch memory:
load and store. Other instructions are limited
only to touching registers. Really, this is all for
the best, but it sure makes atomicity difficult.
The PowerPC engineers threw us a bone in the
form of two special instructions: Load Word and
Reserve Index (lwarx) and Store Word
Conditional Index (stwcx.).

lwarx works just like the common Load Word
and Zero Indexed (lwzx), except it places a
reservation on the loaded address as well as
loading the data. The PowerPC processor can
hold only one reservation at a time.

stwcx., is the yin to lwarx’s yang. Alone,
neither is the life of the party. Together, they
make beautiful music. You see, stwcx. works
just like any other store instruction, except
stwcx. is conditional. It only performs the
store if a reservation is present on the given
address. If there is a reservation, then it clears
the reservation, performs the store and sets the

Atomicity, page 8

condition register CR0[EQ] to true. Otherwise,
the instruction does nothing except set the
CR0[EQ] to false.

So what are these “reservations”? The main
reference for the software interface to the
PowerPC processor, the PowerPC Microprocessor
Family: The Programming Environments, is vague
on the subject. It seems a reservation acts
somewhat like a register. During each store
instruction, the processor compares the given
address to reservation. If they are equal, the
reservation is cleared. However, reservations
can also work in multiprocessor environment. If
processor A places a reservation on address X
and processor B stores to address X, processor
A’s reservation is cleared. This suggests
reservations are more than glorified registers.
Chances are the reference manual is vague since
reservations are implemented in different ways
on different processors.

The Window of Death is caused by a series of
instructions that should not be interrupted. The
Queue Utilities fight interruptions by disabling
interrupts. The 68020 and later fight
interruptions by doing more work in each
instruction. The PowerPC’s answer is different:
go ahead, interrupt all you want — just leave a
note that you have mucked with our data.

These two instructions form a foundation for
emulating atomicity on the PowerPC. Let us go
back to our poor non-atomic
IncrementConnectCount() function,
reviewed in Listing 6.

Listing 6.
// Load address of gConnectCount into register r3.
lwz r3, gConnectCount(rtoc)
// Load integer from RAM into register r4.
lwz r4, 0(r3)
// Add 1 to register r4.
addi r4, r4, 1
// Store incremented value from register r4 back into RAM.
stw r4, 0(r3)
// Return from subroutine.

blr

Listing 7 details how
IncrementConnectCount() can be re-
written to be atomic.

Listing 7.
 // Load address of gConnectCount into register r3.
 lwz r3, gConnectCount(rtoc)
again:
 // Load gConnectCount into register r4.
 lwarx r4, 0, r3
 // Add 1 to register r4.
 addi r4, r4, 1
 // If we didn’t lose the reservation
 // Then store register r4 into gConnectCount.
 stwcx. r4, 0, r3
 // Else try again.
 bne- again
 // Return from subroutine.

 blr

The basic idea here is that if the reservation is
lost, the function tries again. It is unlikely it will
fail the first time around, even more unlikely the
second, close to impossible the third, etc. You
computer science types may worry that there is
no guarantee of forward progress. No one seems
to care about this possibility, but you could add
a retry counter to make sure the function runs in
finite time.

Clever as reservations are, the limit of one per
processor limits their use. You only can
atomically modify one 32 bit word at a time.
This rules out fast doubly linked lists, which
require an atomic update of two values in
memory. It also rules out all but the most basic
singly linked list: a stack. More on this later.

68K Atomicity
or Sweet dreams are made of this

The 68K is fairly awesome when it comes to
atomicity. It defines two instructions that really
help out: Compare and Swap (cas) and
Compare and Swap 2 (cas2).

The cas instruction takes three parameters: a
comparison value, an update value and an
address. cas will atomically compare the value
at the given address to the comparison value. If
the values are equal, cas will atomically update
the value in memory with the update value and
set the Z flag to true. Otherwise cas does
nothing except set the Z flag to false.

A program can grab a value from memory,
modify it, and then execute the cas instruction.

Atomicity, page 9

If the Z flag is set after the instruction, the
program knows that the value in memory was
changed after it was copied, and can retry the
operation.

This try-test-retry business is a lot like the
PowerPC. In fact, rewriting a 68K version of an
atomic PowerPC function is easy since they act
similar. But there is nothing like cas2 on the
PowerPC.

cas2 works like cas, only with 2 comparison
values, 2 update values and 2 addresses. This
allows atomic modification of two different
values in memory. This allows implementation
of atomic doubly linked lists.

Sadly, this instruction is not used much. A
compiler would never generate it (indeed,
Metrowerks 68K C compiler’s inline assembler
does not even recognize cas or cas2).
Futhermore, there is no equivalent on the
PowerPC. It is important to be able to produce
68K and PowerPC binaries from a single source
base, so functions need to be implementable on
both sides of the fence. Atomic stacks can be
implemented natively on 68K and PowerPC, so
let us concentrate on those.

Atomic Stacks
or Everything counts in large
amounts

In the mid 1990s, Apple was working on its new
networking architecture, Open Transport. Open
Transport would make extensive use of linked
lists, and Apple was painfully aware about
Enqueue() and Dequeue()’s inefficiencies.
Apple needed new list code.

It was a good thing the PowerPC was out,
otherwise Apple probably would have chosen
cas2 as the basis for the linked list code,
resulting in tragedy when the PowerPC came
along. It was a good time for new list code: the
old 68000 machines were dwindling in numbers,
so Apple could take advantage of the 68020’s
cas and the PowerPC’s lwarx/stwcx. deadly
duo. The need for atomic stacks is a big reason
why Open Transport will not run on a 68000
processor.

Open Transport defines three functions to deal
with atomic stacks. By the way, Open Transport
does not call them atomic stacks, instead it is the
more formal “last in, first out” (LIFO) list. The
three functions are (1) OTLIFOEnqueue()
which pushes an element onto a stack, (2)
OTLIFODequeue() which pops an element off
a stack and (3) OTLIFOStealList() which
atomically steals a list. Stealing an atomic stack
means copying the stack’s head and setting the
original to nil. You now own the stack.

Stacks are not as useful as queues, which Open
Transport calls “first in, first out” (FIFO) lists. So
Open Transport provides a function called
OTReverseList(). This non-atomic function
reverses a stack into a more useful queue. The
idea is to populate an atomic stack, atomically
steal it and non-atomically reverse it into a
queue. It is a work-around, but it is better than
disabling interrupts.

As nice as Open Transport is, it is not available
on all machines. I want my software to work on
as many machines as possible, so I wrote my
own atomic stack functions:
PushAtomicStack(), PopAtomicStack()
and StealAtomicStack(). Listing 8 and
Listing 9 display the implementation of
PushAtomicStack() and
PopAtomicStack(), respectively. For brevity,
I am only listing the Classic 68K
implementation. In reality, I use an unholy
combination of the C #if/#else/#endif
preprocessor commands and Metrowerks C
compilers’ ability to define assembly functions
to automatically generate the correct code for
Classic 68K, CFM-68K and PowerPC from the
same source file. You can grab the full source for
these functions (including the PowerPC
implementation) from the MacHack 1999 CD or
you can email me.

Listing 8.
typedef struct AtomicElement
AtomicElement, AtomicStack;

struct AtomicElement {
 AtomicElement *next;
};

 asm
 pascal

Atomicity, page 10

 void
PushAtomicStack(
 AtomicElement *element,
 AtomicStack *stack)
{
 // stack.
 movea.l 4(a7), a0
 // element.
 movea.l 8(a7), a1
 // element.
 move.l a1, d0
again:
 // next = stack->next.
 move.l (a0), d1
 // element->next = next.
 move.l d1, (a1)
 // If stack->next didn’t change,
 // Then set stack->next to element.
// cas.l d1, d0, (a0)
 // CWPro2 doesn’t know cas. Here’s the raw opcode.
 dc.l 0x0ED00001
 // Else someone else progressed, try again.
 bne.s again
 // Pop the return address.
 movea.l (a7)+, a0
 // Pop the parameters.
 addq.l #8, a7
 // We’re outta here.
 jmp (a0)

}

Listing 9.
 asm
 pascal
 AtomicElement*
PopAtomicStack(
 AtomicStack *stack)
{
 // stack.
 movea.l 4(a7), a0
again:
 // element = stack->next.
 movea.l (a0), a1
 // element = stack->next.
 move.l a1, d0
 // Is element == nil?
 tst.l d0
 // If equal, return nil.
 beq.s done
 // next = element->next.
 move.l (a1), d1
 // CWPro2 doesn’t know cas. Here’s the raw opcode.
 dc.l 0xED00040
 // If stack->next wasn’t changed, stack->next = next.
// cas.l d0, d1, (a0)
 // Else someone else progressed, try again.
 bne.s again

done:
 // Pop the return address.
 movea.l (a7)+, a0
 // Pop stack parameter.
 addq.l #4, a7
 // Return the popped element on the stack.
 move.l d0, (a7)
 // We’re outta here.
 jmp (a0)

}

Atomic Locks
or I’m on the hunt, I’m after you

Atomic stacks are fast and reentrant. However,
it is easy to corrupt the stack into a nasty
circular list. This occurs if an element is pushed
onto the stack more than once. As an example,
picture a stack containing two elements:
“Bananarama” and “Cheap Trick”. You
successfully push the new element “A-Ha”.
Then you push Bananarama again. The list
becomes currupted with Bananarama pointing
to A-Ha and A-Ha pointing to Bananarama.
Cheap Trick is removed from the stack. Witness
the entire sorted affair in Figure 11.

Figure 11.

Often you will be faced with a situation where
you should place an element onto a stack if it is
not already in the stack. You could walk the
stack looking for the given element, however
such an operation would be non-atomic and
thus could fail if interrupted.

The better approach is to keep a flag in the
element. When the element in pushed onto the

Atomicity, page 11

stack, the flag is set to true. When the element is
popped, the flag is cleared. Now it is easy to
know whether an element is already in a list.

However, the element’s flag is a shared value,
which means it is subject to reentrancy issues.
The answer is to set the flag atomically. An
atomically controlled flag is called an atomic
lock. We can define two functions that
manipulate atomic locks: GrabAtomicLock()
and ReleaseAtomicLock(). Listing 10 shows
the prototypes for these functions.

Listing 10.
typedef unsigned long AtomicLock;

 long // Non-zero if successfully grabbed.
GrabAtomicLock(
 AtomicLock *lock);

 void
ReleaseAtomicLock(

 AtomicLock *lock);

GrabAtomicLock() atomically compares the
value in lock against zero. If the lock’s value is
zero, it is atomically set to one and
GrabAtomicLock() returns true. Otherwise
the value is left alone and GrabAtomicLock()
returns false. ReleaseAtomicLock() simply
unconditionally sets the lock’s value to zero.

Atomic locks are very useful for
synchronization, and are found on most
operating systems. They can go by different
names, like mutex (short for “mutual
exclusion”) or semaphore. Mutexes and
semaphores can also be implemented by
disabling interrupts.

Atomic Queues
or You spin me round

As we have seen above, you cannot atomically
emulate traditional Mac OS queues on the
PowerPC. However, with a slight redefinition of
how the Mac OS defines a queue, you can get
the same effect as a first in, first out queue.

The Mac OS allows Dequeue() to remove an
arbitrary element. While this is nice, it is the
reason we cannot make it atomic. Instead, I
define two functions: PushAtomicQueue()

and PopAtomicQueue(). They both work on a
structure called an AtomicQueue, which is
nothing more than two atomic stacks (see
Listing 11).

Listing 11.
typedef struct {
 AtomicStack in;
 AtomicStack out;

} AtomicQueue;

All PushAtomicQueue() does is call
PushAtomicStack() to push the given
element onto the in stack.

PopAtomicQueue()’s job is more complicated.
First it tries PopAtomicStack() on out. If the
result is not nil, PopAtomicQueue() returns it.
Otherwise the stack is empty and needs
“refilling”.

Refilling is accomplished by using
StealAtomicStack() on in. Now we reverse
the stack by popping each element from the
stolen stack and pushing it onto out. Finally we
pop out and return the result (which may be nil
if the queue is empty). Perhaps Listing 12 will
make this more clear.

Listing 12.
 AtomicElement*
PopAtomicQueue(
 AtomicQueue *queue)
{
 AtomicElement *next, *current;

 current = PopAtomicStack(&queue->out);

 if(current == nil) {
 // Nothing to pop.
 // Refill the queue from the input stack.
 current = StealAtomicStack(&queue->in);
 while(current) {
 next = current->next;
 PushAtomicStack(current,&queue->out);
 current = next;
 }
 current = PopAtomicStack(&queue->out);
 }

 return(current);

}

The only problem is that if
PopAtomicQueue() is interrupted while

Atomicity, page 12

reversing the stack and one or more elements
are added to the queue using
PushAtomicQueue() and then
PopAtomicQueue() is called again, the queue
will not be first in, first out state — some
elements will become out-of-order. No elements
are lost, and the queue will not be corrupted, so
this is not a big problem.

This is essentially the same thing as Open
Transport’s atomic-LIFO reversal to normal-
FIFO technique, except the mechanics are
hidden under two easily understood functions,
providing a polished metaphor.

Conclusion
or Shout, shout, let it all out

Atomicity is important for maintaining
correctness in the face of concurrency.
Concurrency will become more of an issue as
we move towards Mac OS X, so you should
become prepared now. This paper helped
illustrate the issues involved and offered a new
method for implementing atomic queues. If you
don’t know atomicity by now, you will never
ever know it.

Bibliography
or The Policy of Truth

Dewar, R. B. K. and Smosna, M. ,
“Microprocessors: A Programmer’s View”,
McGraw-Hill, 1990. A great read comparing the
x86, 68K, MIPS, SPARC, i860, RIOS and INMOS
Transputer. Dewar and Smosna are particularly
moved by the 68K cas2 instruction, and
provide an overview of IBM’s RIOS, the code
name of the original POWER architecture
(which, of course, evolved into the PowerPC).

Motorola, “68000 Family Programmer’s
Reference Manual”, Motorola, 1989. The 680x0
bible. Pages 20 thru 26 include an example of
how to use cas and cas2 to implement atomic
lists. Chances are my copy is outdated.

IBM, Motorola, “PowerPC Microprocessor
Family: The Programming Environments”,
Motorola, 1994. Often called the Programming
Environments Manual (which allows the nice
acronym “PEM”), this is the PowerPC

programmer’s bible. Appendix E details how to
use lwarx/stwcx. pair for atomic operations.

[Apple1994] Apple, “Inside Macintosh:
Operating System Utilities”, Addison-Wesley,
1994. Features a description of the Mac OS’
Queue Utilities.

[Apple1998a] Bechtel, Brian and “The Eskimo”,
Quinn, “Technote 1104: Interrupt-Safe
Routines”, Apple, 1998. This technote is
required reading for all advanced Macintosh
programmers. It clears up the “interrupt time”
definition mess quite nicely. It even reveals that
the beloved TickCount() is not interrupt-safe!

[Apple1998b] “The Eskimo”, Quinn, “Technote
1137: Disabling Interrupts on the Traditional
Mac OS”, Apple, 1998. This technote describes
how to disable and enable interrupts on the Mac
OS. It also cautions against using the PowerPC’s
lwarx/stwcx. pair since “the behavior of these
instructions varies between PowerPC CPU
types. Accommodating all these variations is
tricky.”

[Songs1980s] Listed in order of inclusion.
Format is:
“Quote”

Artist(s)
Song Title
Album

“Life is so strange...” (from the introduction)
Missing Persons
Destination Unknown
Spring Session M

“I’m about to lose control, and I think I like it”
Pointer Sisters
I’m So Excited
Break Out

“Wake me up, before you go go”
Wham!
Wake Me Up Before You Go Go
Make It Big

“Who can it be now?”
Men At Work
Who Can It Be Now?
Business As Usual

“Take on me”
A-Ha
Take on Me
Hunting High And Low

“Once in a lifetime”
Atomicity, page 13

Talking Heads
Once in a Lifetime
Remain In Light

“She blinded me with science”
Thomas Dolby
She Blinded Me with Science
Retrospectacle-Best Of

“The safety dance”
Men Without Hats
The Safety Dance
The Safety Dance

“I want to be your sledgehammer”
Peter Gabriel
Sledgehammer
So

“When we pretend that we’re dead”
L7
Pretend We’re Dead
Bricks Are Heavy

“Always something there to remind me”
Naked Eyes
Always Something There to Remind Me
Promises, Promises

“Sweet dreams are made of this”
Eurythmics
Sweet Dreams (Are Made of This)
Sweet Dreams (Are made of this)

“Everything counts in large amounts”
Depeche Mode
Everything Counts
People are People

“I’m on the hunt, I’m after you”
Duran Duran
Hungry like the Wolf
Rio

“You spin me round”
Dead or Alive
You Spin Me Round (Like a Record)
Youthquake

“Shout, shout, let it all out”
Tears For Fears
Shout
Songs From The Big Chair

“If you don’t know atomicity by now, you will
never ever know it” (paraphrased)

Simply Red
If You Don’t Know Me by Now
A New Flame

“The Policy of Truth”
Depeche Mode
The Policy of Truth
Violator

Atomicity, page 14

